Abstract

We present a consistent method for calculation of pore size distributions in nanoporous materials from adsorption and desorption isotherms, which form the hysteresis loop H1 by the IUPAC classification. The method is based on the nonlocal density functional theory (NLDFT) of capillary condensation hysteresis in cylindrical pores. It is implemented for the nitrogen and argon sorption at their boiling temperatures. Using examples of MCM-41 type and SBA-15 siliceous materials, it is shown that the method gives the consonant pore size distributions calculated independently from the adsorption and desorption branches of the sorption isotherm. The pore size distributions, pore volumes and specific surface areas calculated from nitrogen and argon data are consistent. In the case of SBA-15 materials, the method evaluates also the amount of microporosity. The results of the NLDFT method are in agreement with independent estimates of pore sizes in regular nanoporous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call