Abstract

Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection. The primary mediators of drug release in the nDS are nanofluidic membranes with hundreds of thousands of nanochannels (up to 100,000/mm(2)) that attain zero-order release kinetics by exploiting nanoconfinement and molecule-to-surface interactions that dominate diffusive transport at the nanoscale. These membranes were characterized using gas flow analysis, acetone diffusion, and scanning and transmission electron microscopy (SEM, TEM). The surface properties of the dielectric materials lining the nanochannels, SiO(2) and low-stress silicon nitride, were further investigated using surface charge analysis. Continuous, sustained in vitro release for both ATS and t-RES was established for durations exceeding 1 month. Finally, the influence of the membranes on cell viability was assessed using human microvascular endothelial cells. Morphology changes and adhesion to the surface were analyzed using SEM, while an MTT proliferation assay was used to determine the cell viability. The nanochannel delivery approach, here demonstrated in vitro, not only possesses all requirements for large-scale high-yield industrial fabrication, but also presents the key components for a rapid clinical translation as an implantable delivery system for the sustained administration of cardioprotectants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.