Abstract

Osseointegration at the bone-implant interface is a prerequisite for endosseous implants to succeed in achieving and maintaining their long-term stability in bone tissue. The achievement of osseointegration is significantly affected by surface nature of implants. To optimize osseointegration, this study presents the characterization of synthesized nanocrystalline hydroxyapatite (nano HA) and in vitro studies on nano HA, nano-HA/collagen, and titanium surfaces. Voids were found within the grain of nano HA, which consisted of the shell and the core. The finding assists the clarification of microstructures of nano HA. By low-temperature mixing nano-HA sol with collagen gel (nano-HA/collagen 80:20), nano HA, and nano-HA/collagen coated on pure titanium or porous anodic titanium oxides resulted in higher wettability and lower roughness. The in vitro studies showed that porous structures produced by anodic oxides on titanium served as positive anchorage sites for cell filopodia to connect, and nano HA decreased cell attachment of osteoblasts and induced well-developed long filopodia and broad lamellipodia, thereby enhancing cellular motility. Collagen involvement enhanced cell adhesion to nano HA. Cell reactions to nano HA, nano-HA/collagen, native, and porous titanium surfaces provide some guidance for an optimal osseointegration by their application in surface modifications for implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.