Abstract
Pi uptake by purified bovine cardiac sarcolemmal vesicles was stimulated by an inwardly directed Na+ gradient, but not by such gradients of K+, Rb+, Li+, and choline. When Na+ was present both inside and outside the vesicles, or when Na+ gradient was dissipated by monensin, the Na+-dependent Pi uptake increased with time, reached a peak, and then declined approaching a steady state. The initial rate of Na+-dependent Pi uptake was a saturable function of Pi concentration (Km = 0.5 mM). These findings indicate the existence of a Na+,Pi-cotransporter in the sarcolemma. The Na+-activation curve of the Pi uptake exhibited positive cooperativity, suggesting the requirement for multiple Na+ binding to the functional unit of the carrier. The initial rate of Na+-dependent Pi uptake decreased as extra-vesicular pH increased in the range of 5.5-8.7. The uptake rate increased under conditions that are known or expected to generate an inside-negative membrane potential, indicating that Pi uptake is accompanied by the uptake of positive charge. These results suggest the electrogenic cotransports of two Na+ and one H2PO4-. We conclude that this cotransporter catalyzes the secondary active transport of Pi across the cardiac plasma membrane and regulates myocardial energy metabolism. We also suggest that the cotransporter may control intracellular Na+ and thus be involved in the regulation of trans-sarcolemmal Ca2+ movement and cardiac contractility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.