Abstract

Nitrogen-doped DLC thin films prepared by a hydrocarbons pyrolysis method were characterized with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and a four-terminal current-voltage measuring method in terms of their structural, bonding, optical and electrical properties. Raman spectra showed that doping N atoms in the DLC films caused the full width at half maximum (FWHM) values of G-peak to be broader, the G-peak positions to shift downward and the ID/IG ratio to be lower than non-doped DLC films. These indicate that N-doping to DLC induces the reduction of the sp2 based nanocluster size. The chemical bonding state of the N-doped DLC films was homogeneous in bulk, which was evaluated with XPS by Ar sputtering of the DLC films. The XPS spectra of C1s and N1s showed that the hybridized C ratio (sp3C/sp2C) of the deconvoluted C1s spectra increased due to the formation of the N bonded to sp3C (N-sp3C). In addition, the optical band gap and the resistance increased by doping N atoms in the DLC films. Our experimental results show that N-doping leads to an increase of the sp3C/sp2C and the resistance as well as the optical band gap of the DLC films prepared with the hydrocarbons pyrolysis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.