Abstract

PurposeThe aim of this study was to evaluate the performance of myocardial perfusion imaging (MPI) systems in detecting perfusion defects (PDs). The defect perfusion index (DPI) was introduced to extend and further advance the current MPI quality metrics. MethodsAn anthropomorphic phantom simulating normal and pathological myocardial perfusion conditions was imaged by various NaI-crystal detector systems with and without corrections for scatter (SC) and attenuation (AC) (Symbia, Symbia + SC, Symbia IQ + SCAC, Symbia IQ), and cadmium-zinc-telluride detector systems without corrections (DSPECT, D530c). The extent of PD and the summed score (SS) were obtained by comparing polar maps with ad hoc normal databases created for each MPI system by using phantom polar maps with normal perfusion. The segmental uptake (SU) and the global uniformity (GU) were evaluated. The DPI was calculated on segments included in the PD to minimize attenuation artifacts outside the PD. The 17 segmental model was used. ResultsThe highest level of uniformity of polar map was obtained for Symbia IQ + SCAC. D530c showed the highest extent of PD and dependence of the extent on the PD position. It showed in general the lowest SU values and the highest GU due to attenuation artifacts. Nevertheless, D530c outperforms other MPI systems in terms of PD detection, showing the highest DPI value. DSPECT system showed the lowest SS value, and DPI values comparable to NaI-crystal detector systems. ConclusionThe DPI can be evaluated to investigate the intrinsic ability of MPI systems to detect PDs, whatever the quantitative post-processing software used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.