Abstract

The storage of triacylglycerols (TAGs) is essential for non-replicating persistence relevant to survival and the re-growth of mycobacteria during their exit from non-replicating state stress conditions. However, the detailed structures of this lipid family in mycobacteria largely remain unexplored. In this contribution, we describe a multiple-stage linear ion-trap mass spectrometric approach with high resolution mass spectrometry toward direct structural analysis of the TAGs, including a novel lipid subclass previously defined as monomeromycolyl diacylglycerol (MMDAG) isolated from biofilm of Mycobacterium smegmatis, a rapidly growing, non-pathogenic mycobacterium that has been used as a tool for molecular analysis of mycobacteria. Our results demonstrate that the major isomer in each of the molecular species of TAGs and MMDAGs consists of the common structure in which Δ(9)18:1- and 16:0-fatty acyl substituents are exclusively located at sn-1 and sn-2, respectively. Several isomers were found for most of the molecular species, and thus hundreds of structures are present in this lipid family. More importantly, this study revealed the structures of MMDAG, a novel subclass of TAG that has not been previously reported by direct mass spectrometric approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.