Abstract

This study was designed to characterize the formulation of protein pharmaceuticals for freeze-drying cycle development. Thermal properties of a protein formulation in a freezing temperature range are important in the development of freezing and primary drying phases. Moisture sorption properties and the relationship between moisture and stability are the bases for the design of the secondary drying phase. We have characterized the formulation of TNF-MAb for the purpose of freeze-drying cycle development. The methods include: DTA with ER probes, freeze-drying microscopy, isothermal water adsorption, and moisture optimization. The DTA/ER work demonstrated the tendency to "noneutectic" freezing for the TNF-MAb formulation at cooling rates of -1 to -3 degrees C/min. The probability of glycine crystallization during freezing was quite low. A special treatment, either a high subzero temperature holding or annealing could promote the maximum crystallization of glycine, which could dramatically increase the Tg' of the remaining solution. The freeze-drying microscopy further indicated that, after the product was annealed, the cake structure was fully maintained at a Tp below -25 degrees C during primary drying. The moisture optimization study demonstrated that a drier TNF-MAb product had better stability. An annealing treatment should be implemented in the freezing phase in order for TNF-MAb to be dried at a higher product temperature during primary drying. A secondary drying phase at an elevated temperature was necessary in order to achieve optimum moisture content in the final product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call