Abstract

ABSTRACTThe appropriate application of multilayers as x-ray dispersion devices requires that their diffraction characteristics be understood. Conventional models, based on perfect-crystal and mosaic-crystal theories, predict diffraction efficiencies (integral reflection coefficients) significantly larger than values measured experimentally. It has been shown that introduction of surface roughness effects into the model can promote agreement between experimental and theoretical values, while the presence of other types of defects produce changes too small in magnitude to explain the discrepancy. Because it is reasonably well agreed that the resolving power of multilayers is only moderate, compared to the more conventional “crystal” dispersing devices, it is important to be able to predict or measure that parameter in order to assess the usefulness for a particular application. Experimental measurements and theoretical calculations have been carried out on multilayers (almost exclusively tungsten/carbon) prepared to have 2d-spacings from 50 to 140A. The experimental work used both singlecrystal and double-crystal spectrometers; the calculations used the crystal diffraction model, as modified to include surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call