Abstract

The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) which plays an essential role in viral RNA replication. Antibodies that specifically recognize NS5B will have utilities in monitoring NS5B production and subcellular localization, as well as in structure-function studies. In this report, three mouse monoclonal antibodies (mAbs), 16A 9C 9, 16D 9A 4 and 20A 12C 7, against a recombinant NS5B protein (genotype 1a, H-77 strain) were produced. These mAbs specifically recognize HCV NS5B, but not RdRps of polivirus (PV), bovine viral diarrhea virus (BVDV) or GB virus B (GBV-B). The mAbs can readily detect NS5B in cellular lysates of human osteosarcoma Saos2 cells constitutively expressing the nonstructural region of HCV (NS3-NS4A-NS4B-NS5A-NS5B). NS5B proteins of different HCV genotypes/subtypes (1a, 1b, 2a, 2c, 5a) showed varied affinity for these mAbs. Interestingly, the epitopes for the mAbs were mapped to the palm subdomain (amino acid 188-370) of the HCV RdRp as determined by immunoblotting analysis of a panel of HCV/GBV-B chimeric NS5B proteins. The binding site was mapped between amino acid 231 and 267 of NS5B for 16A 9C 9, and between 282 and 372 for 16D 9A 4 and 20A 12C 7. Furthermore, these mAbs showed no inhibitory effect on the NS5B polymerase activity in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call