Abstract

In gas turbines and diesel engines, there is a demand for thick thermal barrier coatings (TTBCs) due to the increased process combustion temperatures. Unfortunately, the increased thickness of plasma-sprayed thermal barrier coatings (TBCs) normally leads to a reduced coating lifetime. For that reason, the coating structures have to be modified. When modifying the structure of TTBCs, the focus is normally on elastic modulus reduction of the thick coating to improve the coating strain tolerance. On the other hand, coating structural modification procedures, such as sealing treatments, can be performed when increased hot-corrosion resistance or better mechanical properties are needed. In this article, several modified zirconia-based TTBC structures with specific microstructural properties are discussed. Coating surface sealing procedures such as phosphate sealing, laser glazing, and sol-gel impregnation were studied as potential methods for increasing the hot-corrosion and erosion resistance of TTBCs. Some microstructural modifications also were made by introducing segmentation cracks into the coating structures by laser glazing and by using special spraying parameters. These last two methods were studied to increase the strain tolerance of TTBCs. The coating microstructures were characterized by optical microscopy, a scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The effect of sealing procedures on the basic thermal and mechanical properties of the coatings was studied. In addition, some correlations between the coating properties and microstructures are also presented, and the advantages and drawbacks of each modification procedure are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call