Abstract

Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as the sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that MnpC might have played an important role in MNP degradation. In order to experimentally confirm the prediction, we have now characterized the mnpC-encoded (amino)hydroquinone dioxygenase involved in the ring-cleavage reaction of MNP degradation. Real-time PCR analysis indicated that mnpC played an essential role in MNP degradation. MnpC was purified to homogeneity as an N-terminal six-His-tagged fusion protein, and it was proved to be a dimer as demonstrated by gel filtration. MnpC was a Fe(2+)- and Mn(2+)-dependent dioxygenase, catalyzing the ring-cleavage of hydroquinone to 4-hydroxymuconic semialdehyde in vitro and proposed as an aminohydroquinone dioxygenase involved in MNP degradation in vivo. Phylogenetic analysis suggested that MnpC diverged from the other (chloro)hydroquinone dioxygenases at an earlier point, which might result in the preference for its physiological substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.