Abstract

The successful design and operation of Liquid-Solid (LS) and Gas-Liquid-Solid (GLS) stirred tank reactors requires an accurate determination of the level of solid suspension needed for the process at hand. A poor design of the stirred tank to achieve optimum conditions and maintain the system under these conditions during operation may cause significant drawbacks concerning product quality (selectivity and yield) and cost. In this paper, the limitations of applying conventional measurement techniques for the accurate characterization of critical impeller speed for just off-bottom suspension (NJS) at high solid concentrations are described. Subsequently, the Gamma-Ray Densitometry technique for characterizingNJSis introduced, which can overcome the limitations of previous experimental techniques. The theoretical concept of this method is explained, and experimental validation is presented to confirm the accuracy of the Gamma-Ray Densitometry technique. The effects of clearance, scale, and solid loading onNJSfor several impellers are discussed. ExperimentalNJSvalues are compared with correlations proposed in the literatures, and modifications are made to improve the prediction. Finally, by utilizing the similarity to the incipient movement of solid particles in other systems, a theoretical model forNJSprediction is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.