Abstract

A novel technology in the paper industry makes possible to produce paper by using a mineral powder and a polymer instead of cellulose fibers. This new product is called mineral paper, it presents some potential environmental advantages compared with conventional paper, while it exhibit a similar appearance and properties. The purpose of this work is to determine the possibilities of an air-coupled ultrasonic technique using wide band signals and spectral analysis to study this kind of materials. As no direct contact nor coupling fluids between the paper and the transducers is required, this technique is specially well suited to this problem. It also offers good perspectives for the development of a on-line quality control system. A through transmission technique (0.15–2.3MHz) is employed and Fourier analysis is performed to obtain both magnitude and phase spectra of the transmission coefficient. Properties in the thickness direction as well as in the paper plane has been determined by the excitation and analysis of thickness and plate resonances at several incident angles and different directions within the paper plane. Different paper grades (from 140 to 480g/m2) have been studied. Very high attenuation coefficients and very low propagation velocities (and hence elastic constant) have been obtained for most cases, this can be explained by considering the large porosity of this material (up to 50%) and the microstructure: a mixture of solid grains with a resin with a relatively large fraction of air-filled pores. Measurements show that unlike conventional cellulose machine made paper this material is transversely isotropic (isotropic in the paper plane) and that the degree of anisotropy (when in-plane directions are compared with the thickness direction) largely depends on the level of resin impregnation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.