Abstract

Milled wood lignin samples from Loblolly pine stem wood, forest residue, and bark were isolated and characterized by quantitative (13)C and (31)P nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC) for molecular weight determination. Results from (13)C NMR show the stem wood and forest residue samples have similar functional group contents. However, the bark has fewer methoxyl groups, β-O-4 structures, dibenzodioxocin, and side chains than the other two lignins. The bark lignin has the highest amounts of p-hydroxyphenyl (h) and C-5 condensed lignin, stem wood has the lowest, and the residue lies between. (31)P NMR analysis indicates that bark lignin contains more C-5 substituted phenolics and fewer aliphatic hydroxyl groups than the lignin isolated from stem wood or residue. The molecular weight distribution analysis indicates the bark lignin has higher weight-average molecular weight (M(w)) and polydispersity index than the lignin recovered from stem wood or residue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.