Abstract

Organic electric-field regulator has the ability to suppress the space charge accumulation in the composite due to its electric-field and filler-content enhanced conductivity. Moreover, it can also migrate towards the high electric field region under the electric field gradient force, which further homogenizes the non-uniform electric field distribution. To characterize the migration behavior of the organic electric-field regulator in the composite under electric field, a distributed equivalent circuit model is firstly introduced, and it is solved to obtain the space-time distribution of conductivity in composite based on the synchronous spectra of space charge and polarization current. Combining the mathematical relationship between the direct current (DC) conductivity and electric field as well as regulator content, the space-time distribution of organic electric-field regulator in the composite is then settled. The allyloxy polyethylene glycol (APEG) is used as an example organic electric-field regulator and is filled into low-density polyethylene (LDPE) matrix to prepare composites. The DC conductivity and the synchronous spectra of space charge and polarization current are measured, respectively. The composites show noticeable electric-field and regulator-content enhanced conductivities. The space charge distribution shows that the APEG is capable of suppressing the space charge and homogenizing the electric field distribution compared with pure LDPE. The space-time distribution of regulator content in the 0.5 wt% composite is determined by the proposed method, and the regulator content near the electrodes is much higher than in the bulk, which is consistent with the infrared microscope images. The higher filler content means a higher DC conductivity, which lowers the high electric field near the electrodes and contributes to more uniform electric field distribution in the composite. The proposed method experimentally characterizes the migration behavior of the organic electric-field regulator in the polymer composite for the first time, and provides an effective way to study the migration mechanism of organic molecules (e.g. organic electric-field regulator) in the polymer composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call