Abstract

A protocol is described to assess self-healing of crack damage in a polymer coating deposited on a substrate containing a microvascular network. The bio-inspired coating/substrate design delivers healing agent to cracks in the coating via a three-dimensional microvascular network embedded in the substrate. Through capillary action, monomer flows from the network channels into the crack plane where it is polymerized by a catalyst embedded in the coating. The healing efficiency of this materials system is assessed by the recovery of coating fracture toughness in a four-point beam bending experiment. Healing results for the microvascular networks are compared to data for a coating containing microencapsulated healing agents. A single crack in a brittle epoxy coating is healed as many as seven times in the microvascular systems, whereas microcapsule-based healing occurs for only one cycle. The ability to heal continuously with the microvascular networks is limited by the availability of catalyst in the coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.