Abstract
This paper reports on the characterization of electromechanical high frequency resonators realized using a novel SOI-based low temperature fabrication process. Key features of the devices are single crystal silicon resonant beams, 200 nm to 600 nm thin transducer gaps, and gold electrodes. The fabrication process combines bulk silicon micromachining applying deep reactive ion etching, low temperature deposition of a thin sacrificial oxide and electroplating of the lateral electrodes. The resonant behavior of devices with resonance frequencies f/sub res/ between 420 kHz and 4.11 MHz was characterized as a function of the bias voltage V/sub bias/ applied to the beam. Measurements were performed at ambient pressures p between 5/spl times/10/sup -5/ mbar and 0.5 mbar. Q values up to 52,000 at f/sub res/=420 kHz and 6,000 at f/sub res/=4.11 MHz were obtained. The interaction of resonator and measurement setup were simulated using an electrical network simulation program combined with a finite element analysis using ANSYS/sup /spl reg//.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.