Abstract

Complex coacervation in casein/gum tragacanth (CAS/GT) mixtures was studied as a function of pH, initial protein to polysaccharide mixing ratio (Pr:Ps), total biopolymer concentration, core material load and ionic strength. This study is aimed at understanding how these parameters influence the coacervation kinetics, the coacervate yield, and entrapment efficiency. At a Pr:Ps=2:1, an optimum pH of complex coacervation was found 4.35, at which the intensity of electrostatic interaction was maximum. At these conditions, the phase separation occurred the fastest and the final coacervate yield and entrapment efficiency were the largest. Moreover, the developed β-carotene loaded microcapsules formulation was found to have particle size 159.71±2.16μm, coacervates yield 82.51±0.412%, entrapment efficiency 79.36±0.541%. Varying the Pr:Ps shifted the value of optimum pH. Electrostatic interaction and formation of coacervates was confirmed by Fourier Transform Infra Red (FTIR) spectra. Size and surface properties of coacervates were studied using Scanning Electron Microscopy (SEM). Entrapment of core material within the coacervates was confirmed by Confocal Laser Scanning Microscope (CLSM). The resultant formulation was evaluated for release study and antioxidant activity. Stability of encapsulated β-carotene was evaluated under three levels of temperature (5, 25 and 40°C) for 3 months. Encapsulation strongly increased the stability of micronutrients. Our results advocate potential of microcapsules as a novel carrier for the safeguard and sustained release of micronutrient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.