Abstract

Technical ceramics are being widely employed in the electric power, medical and engineering industries because of their thermal and mechanical properties, as well as their high resistance qualities. The manufacture of technical ceramic components involves complex processes, including milling and stirring of raw materials in aqueous solutions, spray drying and dry pressing. In general, the spray-dried powders exhibit an important degree of variability in their performance when subjected to dry-pressing, which affects the efficiency of the manufacturing process. Commercial additives, such as deflocculants, biocides, antifoam agents, binders, lubricants and plasticizers are thus applied to ceramic slips. Several bacterial and fungal species naturally occurring in ceramic raw materials, such as Sphingomonas, Aspergillus and Aureobasidium, are known to produce exopolysaccharides. These extracellular polymeric substances (EPS) may confer unique and potentially interesting properties on ceramic slips, including viscosity control, gelation, and flocculation. In this study, the microbial communities present in clay raw materials were identified by both culture methods and DNA-based analyses to select potential EPS producers based on the scientific literature for further assays based on the use of EPS for enhancing the performance of technical ceramics. Potential exopolysaccharide producers were identified in all samples, such as Sphingomonas sp., Pseudomonas xanthomarina, P. stutzeri, P. koreensis, Acinetobacter lwoffi, Bacillus altitudinis and Micrococcus luteus, among bacteria. Five fungi (Penicillium citrinum, Aspergillus niger, Fusarium oxysporum, Acremonium persicinum and Rhodotorula mucilaginosa) were also identified as potential EPS producers.

Highlights

  • The ceramic industry represents an important sector of economic activity in the European countries.Technical ceramics in particular, called high-performance ceramics, are being widely employed in the electric power, medical and engineering industries due to their thermal, mechanical properties and high resistance qualities

  • Some of the employed additives are toxic for human health, and their application represents an increase in the cost of the manufacturing process

  • Samples were collected during the manufacturing process of one of the main types of ceramic produced in the plant by unidirectional dry pressing

Read more

Summary

Introduction

Called high-performance ceramics, are being widely employed in the electric power, medical and engineering industries due to their thermal, mechanical properties and high resistance qualities. Technical ceramic components can be manufactured by different processes, such as unidirectional dry pressing, extrusion, isostatic pressing and injection molding [1]. The resulting spray-dried powders exhibit an important degree of variability in their performance, during conformation, due to the adhesion of the conformed part to the mold, and the different mechanical strength of the conformed ceramic product. This variability affects the efficiency of the manufacturing process. Some of the employed additives are toxic for human health, and their application represents an increase in the cost of the manufacturing process

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.