Abstract

Mg–20 wt% Ni–Y composite was successfully prepared by reactive mechanical alloying (RMA). X-ray diffraction (XRD) measurement showed that both MgH 2 and Mg 2NiH 4 co-exist in the milled composite. The composite exhibits excellent hydrogen sorption kinetics and does not need activation on the first hydrogen storage process. It can absorb 3.92 and 5.59 wt% hydrogen under 3.0 MPa hydrogen pressure at 293 and 473 K in 10 min, respectively, and desorb 4.67wt% hydrogen at 523 K in 30 min under 0.02 MPa hydrogen pressure. The equilibrium desorption pressure of the composite are 0.142, 0.051 and 0.025 MPa at 573, 543 and 523 K, respectively. The differential scanning calorimetry (DSC) measurement showed that dehydrogenation of Mg–20 wt% Ni–Y composite was depressed about 100 K comparing to that of milled pure MgH 2. It is deduced that both the catalysis effect of Mg 2Ni and YH 3 distributed in Mg substrate and the crystal defects formed by RMA are the main reason for improving hydrogen sorption kinetics of the Mg–20 wt% Ni–Y composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.