Abstract

Human IgG is a defence protein and quite reactive to dicarbonyls. In this study, methylglyoxal-induced modification of IgG was examined by various biochemical and biophysical methods. The methylglyoxal-induced changes in IgG were monitored by UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy, 1-anilinonaphthalene-8-sulfonic acid (ANS), and thermal denaturation studies. Aggregate formation was studied by Thioflavin T (ThT), Congo red (CR) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Spectroscopic studies suggested gross changes in MGO-modified IgG. Fluorogenic AGEs appeared during modification and the MGO-modified IgG gained thermostability. The reaction produced oxidative stress in the medium because carbonyl content increased manifold and sulfhydryl groups decreased. Enhanced binding of the MGO-modified IgG by Congo red and Thioflavin T suggests crosslinking and aggregation. This was supported by SEM and TEM results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call