Abstract

BackgroundBone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology.MethodsMSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X.ResultsCells were homogeneously mixed throughout the scaffold and cells had limited direct cell–cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels.ConclusionsMSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0301-8) contains supplementary material, which is available to authorized users.

Highlights

  • Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair

  • We have shown that fibrochondrocytes (FCCs) seeded in a collagen tissue-engineered meniscus under static mechanical boundary conditions are able to mimic anisotropic fiber formation seen in native menisci as well as improve mechanical properties [14]

  • Characterization of cell morphology Cells embedded in collagen gels visualized using fluorescent probes showed that cells were homogeneously distributed within the construct, with limited direct cell–cell contact

Read more

Summary

Introduction

Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; more information is needed on how to direct MSC behavior. Depending on the severity of the tear, the meniscus is either partially resected or replaced using a meniscus allograft. Meniscal allograft procedures are limited in availability, shape and immunocompatibility [2,3,4]. Recent studies have demonstrated the applicability of intra-articular stem cell injection for repair of small meniscal tears [5,6,7,8]. Tissue engineering of the meniscus may offer a promising alternative to meniscus allograft replacement

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call