Abstract
Metal-binding proteins play important roles in biological functions of metals. However, only very limited mercury-binding proteins with high abundance were characterized in cells or organisms. Characterization of mercury-binding proteins in proteome-wide is important for elucidating mechanisms of mercury toxicity comprehensively. In this study, a method based on immobilized mercury ion affinity chromatography was developed for identification of putative mercury-binding proteins. The method was then successfully applied to profile mercury-binding proteins in human neuroblastoma SK-N-SH cells. In total, 38 proteins were identified as mercury-binding proteins, in which most of them were uncharacterized to associate with mercury in cells. The identified mercury-binding proteins did not show obvious relevance to protein abundance and were mainly involved in protein processing in endoplasmic reticulum, protein folding, and cytoskeleton organization. The newly built metalloproteomic approach provided valuable information on the possible molecular mechanisms and protein candidates for mercury transport and toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.