Abstract

Two melanin-overproducing Pseudomonas putida F6 mutants were generated using transposon (Tn5) mutagenesis. Mutants were disrupted in a transcriptional regulator (TR) and a homogentisate 1,2-dioxygenase (HDO) gene. Colonies of mutant F6-TR overproduced a black pigment on solid medium. The same mutant (F6-TR) had a 3.7-fold higher tyrosinase activity compared with the wild-type strain when induced with ferulic acid. However in tyrosine uptake assays whole cells of the mutant strain F6-TR consumed eight times less tyrosine compared with the wild-type strain. Mutant F6-HDO produced a diffusible red pigment into the growth medium. Pigment production by mutant F6-HDO is sixfold higher than the wild-type strain. The biomass yield of mutant F6-HDO grown on tyrosine as the sole source of carbon and energy was 1.2-fold lower than the wild-type strain. While the growth of the wild-type strain was completely inhibited by 5 min of exposure to UV light (254 nm) both mutant strains showed survival rates >30%. Mutant F6-HDO was able to tolerate higher concentrations of hydrogen peroxide (H(2)O(2)) exhibiting 1.5 times smaller zones of inhibition at 10 mM H(2)O(2) compared with mutant F6-TR and the wild-type strain. The pigments produced by all strains were purified and confirmed to be melanins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.