Abstract

BackgroundMelanic (dark) morphs have been barely reported in peridomestic and sylvatic conditions for Triatoma infestans, the most important vector of Chagas disease in the Southern Cone of South America. Adults with dark and small yellow markings on the connexivum were collected after manual searches conducted by technical personnel in 62 domiciliary units in Cruz del Eje, Córdoba Province, Argentina. The last community-wide insecticide spraying campaign before the study had been conducted three years earlier. We investigated if there was a measurable color morph variation (melanic and non-melanic) in wings and connexivum; we determined infestation, distribution of melanic and non-melanic forms, and correspondence of colorimetric variation with variations in morphology (wing size and shape and body length), development (wing fluctuating asymmetry), physiology (nutritional status) or behaviour (flight initiation).ResultsForty-nine females, 54 males and 217 nymphs were collected in 24 domiciliary units. House infestation and colonization were 53% and 47%, respectively. Most of the T. infestans individuals (83.2%) were collected in chicken coops; intradomicile infestation was recorded in only one case. The chromatic cluster analysis showed two well-defined groups: melanic and non-melanic. The melanic group included 17 (35%) females and 25 (46%) males. Peridomestic infestation was lower for melanic than for non-melanic adults. Melanic morphs were collected in houses from several localities. Sexual dimorphisms were confirmed by morphometric measurements. Body length was large in melanic adults (P < 0.01 only for males). Differences between groups were significant for wing size and shape, but not for weight or weight/body length ratio. Melanic females and males showed significantly higher fluctuating asymmetry (FA) indices than their non-melanic counterparts.ConclusionsThis is the second report of melanic forms of T. infestans in domestic and peridomestic habitats in the Dry Chaco region of Argentina. Although non-melanic adults exhibited a higher infestation rate, melanic adults were widespread in the area and were collected in the infested domicile and in most types of peridomestic annexes. Differences in morphometric variables between groups might be due to different ecological adaptations. The higher FA levels observed in melanic individuals suggest a higher developmental instability and a selective advantage of non-melanic individuals in domestic and peridomestic habitats.

Highlights

  • Melanic morphs have been barely reported in peridomestic and sylvatic conditions for Triatoma infestans, the most important vector of Chagas disease in the Southern Cone of South America

  • Nattero et al Parasites Vectors (2020) 13:47 levels observed in melanic individuals suggest a higher developmental instability and a selective advantage of nonmelanic individuals in domestic and peridomestic habitats

  • Fine-scale quantification of phenotypic color variation has potential applications in the study of populations, sibling species, hybrids and closely related taxa [1, 3, 4]. This is the second report of melanic forms of T. infestans in domestic and peridomestic habitats in the Dry Chaco region of Argentina

Read more

Summary

Introduction

Melanic (dark) morphs have been barely reported in peridomestic and sylvatic conditions for Triatoma infestans, the most important vector of Chagas disease in the Southern Cone of South America. One of the simplest and most common examples of such conspicuous variation is melanism, the occurrence of variants that are mostly or completely dark in pigmentation. This type of variation may involve discrete melanic and non-melanic phenotypes or continuously varying pigmentation [1]. Melanism is very common in insects, with melanic or dark morphs exhibiting an unusually high concentration of cuticular melanin [2]. Melanin pigments and their precursors are important structural and protective components of the cuticle [3]. Melanism has correlated and/or pleiotropic effects, including morphological, developmental, physiological, behavioural and/or neurological traits (reviewed in [1])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.