Abstract

BackgroundCryptosporidium spp. are important diarrhea-causing pathogens in humans and animals. Comparative genomic analysis indicated that Cryptosporidium-specific MEDLE family proteins may contribute to host adaptation of Cryptosporidium spp., and a recent study of one member of this family, CpMEDLE-2 encoded by cgd5_4590, has provided evidence supporting this hypothesis. In this study, another member of the protein family, CpMEDLE-1 of Cryptosporidium parvum encoded by cgd5_4580, which is distinct from CpMEDLE-2 and has no signature motif MEDLE, was cloned, expressed and characterized to understand its function.MethodsCpMEDLE-1 was expressed in Escherichia coli and polyclonal antibodies against the recombinant CpMEDLE-1 protein were prepared in rabbits. Quantitative PCR was used to analyze the expression profile of cgd5_4580 in C. parvum culture. Immunofluorescence staining was used to locate CpMEDLE-1 expression in life-cycle stages, and in vitro neutralization assay with antibodies was adopted to assess the role of the protein in C. parvum invasion.ResultsThe results indicated that cgd5_4580 had a peak expression at 2 h of C. parvum culture. CpMEDLE-1 was located in the mid-anterior region of sporozoites, probably within the dense granules. The neutralization efficiency of anti-CpMEDLE-1 antibodies was approximately 40%.ConclusionsThe differences in protein and gene expression profiles between CpMEDLE-1 and CpMEDLE-2 suggest that MEDLE proteins have different subcellular locations, are developmentally regulated, could be potentially involved in the transcriptional regulation of the expression of parasite or host proteins and may exert their functions in different stages of the invasion and development process.

Highlights

  • Cryptosporidium spp. are important diarrhea-causing pathogens in humans and animals

  • CpMEDLE-1 possesses six low complexity regions (LCRs) along the sequence, which are present in other MEDLE proteins (Fig. 1b)

  • The phylogenetic tree inferred from C. parvum and C. hominis MEDLE proteins indicated that a CpMEDLE-1 is most related to CpMEDLE-3, followed by ChMEDLE-1, CpMEDLE-4, CpMEDLE-5 and CpMEDLE-6 (Fig. 1c)

Read more

Summary

Introduction

Comparative genomic analysis indicated that Cryptosporidium-specific MEDLE family proteins may contribute to host adaptation of Cryptosporidium spp., and a recent study of one member of this family, CpMEDLE-2 encoded by cgd5_4590, has provided evidence supporting this hypothesis In this study, another member of the protein family, CpMEDLE-1 of Cryptosporidium parvum encoded by cgd5_4580, which is distinct from CpMEDLE-2 and has no signature motif MEDLE, was cloned, expressed and characterized to understand its function. A few species such as C. parvum and C. ubiquitum have a broad host range and are generally associated with zoonotic transmission [4]. Even in the latter, host adaptation has been noticed at the subtype family level. Among the three common subtype families in C. parvum, IIa normally infects cattle, IId is commonly

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.