Abstract

(R)-3-Hydroxycarboxylic acids, chiral enantiomers of bacterial polyhydroxyalkanoates (PHA), may be valuable synthons for the production of numerous industrial materials such as β-lactams, fungicides, flavors, pheromones and vitamins. In this study, (R)-3-hydroxycarboxylic acid [(R)-3HAs)] synthons were produced by Streptomyces sp. JM3 (JN166713) under batch fermentation. Initial confirmation of PHA production was achieved by matrix assisted laser desorption ionization-time of flight mass spectroscopy and gas chromatography/mass spectroscopy (GC/MS). Subsequently, (R)-3HAs were produced by in vivo depolymerization and the monomers were separated using acid precipitation and anion exchange chromatography. The (R)-3HAs were identified by GC/MS as 3-trimethylsiloxy esters of decanoic, octanoic and butanoic acids. This was further supported by (13)C nuclear magnetic resonance spectrometry. The (R)-3HAs exhibited antimicrobial activity against Escherichia coli O157:H7, Listeria monocytogenes (ATCC 7644) and Salmonella typhimurium (ATCC 14028) with minimum inhibitory concentration ranging from 12.5 to 25 mg ml(-1). However, the minimum bactericidal concentration data suggest that the (R)-3HAs may be bactericidal for E. coli O157:H7 and bacteriostatic for S. typhimurium and L. monocytogenes. Furthermore, the major purified synthon was shown to minimize the invasion of fibroblasts by S. typhimurium (ATCC 14028) [p < 0.05], using the MTT assay [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.