Abstract

This study tested the diagnostic value of 18F-FDG PET/CT (FDG-PET) volumetric and texture parameters in the histological differentiation of mediastinal bulky disease due to classical Hodgkin lymphoma (cHL), primary mediastinal B-cell lymphoma (PMBCL) and grey zone lymphoma (GZL), using machine learning techniques. We reviewed 80 cHL, 29 PMBCL and 8 GZL adult patients with mediastinal bulky disease and histopathological diagnoses who underwent FDG-PET pre-treatment. Volumetric and radiomic parameters were measured using FDG-PET both for bulky lesions (BL) and for all lesions (AL) using LIFEx software (threshold SUV ≥ 2.5). Binary and multiclass classifications were performed with various machine learning techniques fed by a relevant subset of radiomic features. The analysis showed significant differences between the lymphoma groups in terms of SUVmax, SUVmean, MTV, TLG and several textural features of both first- and second-order grey level. Among machine learning classifiers, the tree-based ensembles achieved the best performance both for binary and multiclass classifications in histological differentiation. Our results support the value of metabolic heterogeneity as an imaging biomarker, and the use of radiomic features for early characterization of mediastinal bulky lymphoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call