Abstract

Abstract Application of functionally graded materials (FGMs) in energy, aviation and nuclear industries has increased since the last decade due to potential reduction of in-plane and transverse through-the-thickness stresses, enhanced residual stress distribution, superior thermal properties, free from delamination, and reduced stress intensity factors. FGMs are categorized as an advanced class of composite materials where the two constituent materials are graded along the thickness direction. Absence of sharp change in material property in the interface layer eliminates the problem of delamination and debonding, which is a major concern for traditional composite material. In this work, PLA-ABS functionally graded material is manufactured using additive manufacturing techniques through fused deposition modeling (FDM) using Y-type extruder. X-ray computed tomography test is conducted to see the air void (generated during printing) distribution in the printed FGM. Tensile test (as per ISO-527standrad) is conducted to evaluate the Young’s Modulus of additive manufactured FGMs. Three different measuring positions are considered in the FGM specimens to check the effect of property change along the grading direction. Tensile test results of PLA-ABS FGM are compared with their individual constituents (ABS and PLA). Further, flexural vibration test is conducted to evaluate the natural frequency of printed FGM beam. Experimentally determined mechanical and dynamic characteristics in terms effective Young’s Modulus and natural frequency are analyzed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call