Abstract

In the emerging paradigm of stereotactic radiosurgery being proposed for MR-guided radiotherapy (MRgRT), assessment of mechanical geometric accuracy is critical for the implementation of stereotactic delivery. We benchmarked the mechanical accuracy of an MR Linac system that lacks an onboard detector/array. Our mechanical tests utilize a half beam block (HBB) geometry that takes advantage of the sensitivity of a partially occluded detector. Mechanical tests benchmarked the couch, MLC, and gantry geometric accuracy for an MR-Linac system. An HBB technique was used to irradiate an ionization chamber profiler (ICP) array with partial occlusion of individual detectors for characterization of MLC skew, beam divergence displacement, and RT isocenter localization. The sensitivity of the partially occluded detector's ICP-X (detector width) and ICP-Y (detector length) was characterized by displacing the detector relative to radiation isocenter by 0.2mm increments, introduced through couch motion. The accuracy of the HBB ICP technique was verified with a starshot using radiochromic film, and the reproducibility was verified on a conventional C-arm Linac and compared to Winston-Lutz. The sensitivity of the HBB technique as quantified through the dose difference normalized to open field as a function of displacement from RT isocenter was 6.4%/mm and 13.0%/mm for the ICP-X and ICP-Y orientation, respectively, due to the oblong detector orientation. Couch positional accuracy and sag was within ±0.1mm. Maximum MLC positional displacement was 0.7mm with mean MLC skew at 0.07°. The maximum beam divergence displacement was 0.03mm. The gantry angle was within 0.1°. Independent verification of the RT isocenter localization procedure produced repeatable results. This work serves for characterizing the mechanical and geometric radiation accuracy for the foundation of an MR-guided stereotactic radiosurgery program, as demonstrated with high sensitivity and independent validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.