Abstract

To clarify events involved in 1,25(OH)2D3-stimulated osteoclast-like cell (OCLC) formation in primary murine marrow culture, we have characterized kinetics of precursor proliferation and fusion and their dependence on macrophage colony-stimulating factor (MCSF). 3H-thymidine nuclear incorporation in tartrate-resistant acid phosphatase positive multinucleated cells (TRAP+ MNCs) was assessed: 3H-thymidine incorporation was greatest when tracer was added during day 4 or 5, with labeled nuclei in 81% (day 4) and 90% (day 5) of the TRAP+ MNCs counted at the end of day 7. The percentage of total nuclei labeled was highest when 3H-thymidine was dosed on day 4 (58%), decreasing to 2% by day 7. Final TRAP+ MNC numbers were depleted by 80% when treated for 24 h with hydroxyurea on either day 3 or 4; this inhibition dropped to 57% and 12% when hydroxyurea was pulsed during days 5 or 6, respectively. The absence of 1,25(OH)2D3 during days 1-4 caused 70% attenuation of TRAP+ MNC formation; however, exposure to 3H-thymidine during day 4 in this experiment resulted in subsequent labeling of 81% of the TRAP+ MNCs formed, indicating that precursor proliferation occurred in the absence of 1,25(OH)2D3. To demonstrate that proliferation required MCSF, cultures were exposed to a monoclonal anti-MCSF antibody during days 3, 4, 5, 6, or 7. Inhibition of TRAP+ MNC formation was 85% when antibody was added during day 3. Antibody treatment after day 5 had little effect on the OCLC number. Fusion of precursors showed steady progression with OCLCs containing 4.8 +/- 0.3 nuclei at the end of day 4, 8.3 +/- 0.5 nuclei after day 5, 12.0 +/- 1.3 after day 6, and 13.7 +/- 1.5 at the end of day 7. This steady accretion of nuclei was unaffected by doses of MCSF antibody which blocked proliferation. In conclusion, we have shown that OCLCs arise from an MCSF-dependent expansion of the precursor pool occurring during days 3 and 4. Fusion of these precursors, which begins as proliferation diminishes, is able to progress in the presence of anti-MCSF antibody. These results should help refine the analysis of factors affecting proliferation and fusion of osteoclasts in murine marrow culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.