Abstract

Hyaline layers, freshly prepared from one-hour-old embryos, were devoid of gelatin-cleavage activity. However, upon storage at 4 degrees C, gelatin-cleavage activities appeared; three species of apparent mol mass 94 --> 117-, 90-, and 45-kDa were seen. All three species required zinc for activity. Using gel-exclusion chromatography we separated the 94 --> 117-, and 90-kDa species from the 45-kDa activity. The two higher mol mass species were inhibited by ethylenebis (oxyethylenenitrilo) tetraacetic acid and the lost activity was restored by calcium. Reconstitution of activity occurred with an apparent dissociation constant (calcium) of 5 microM. The presence of millimolar concentrations of magnesium had a minimal inhibitory effect on activity. The thermal denaturation profile of the higher mol mass gelatin-cleavage activity was significantly different in the presence and absence of calcium. Stabilization of these activities against thermal denaturation at 60 degrees C occurred with an apparent dissociation constant (calcium) of 0.6 mM. Magnesium had no significant effect on the thermal denaturation profile. Collectively, these results suggest at least two different modes of interaction between calcium and the higher mol mass gelatinases. These conclusions are discussed in the context of the high calcium and magnesium concentrations present in the sea water environment of the sea urchin embryo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.