Abstract

This paper presents experimental results to show how secondary electron (SE) energy spectroscopy inside a scanning electron microscope (SEM) might become a useful tool for characterising optical materials. It demonstrates how SE energy spectroscopy can quantify and analyse the build-up of hydrocarbon contamination layers on metal surfaces, potentially useful for monitoring the degradation of metallic mirror coatings. Experimental results are presented to illustrate how the SE energy spectral method can be used to measure dopant concentration in bulk semiconductor samples and the in-built voltage of pn junction heterojunctions. This capability, together with the SEM's ability to provide high spatial resolution, points towards SE energy spectroscopy becoming a powerful analytical technique for quantitatively mapping optoelectronic semiconductors parameters on the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.