Abstract

Direct bonded copper (DBC) are produced by high temperature (>1000° C) bonding between copper and a ceramic (usually alumina). They are commonly used in power electronics. However, their reliability when exposed to thermal cycling is still an issue, that could be addressed by advanced numerical simulations. This paper describes the identification of the parameters for a numerical model that uses finite elements with cohesive zones. This identification is based on careful mechanical characterization of all components of the DBC (ceramic, copper and interface) using an innovative approach based on image correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.