Abstract

As the marine industry develops, the importance of seawater treatment process is increasing. To treat seawater, oxidation processes have primarily been used, such as ballast water treatment systems, aquaculture farm operations, aquarium management, and seawater desalination. However, dissolved organic matter in seawater, whose characteristics vary spatially and seasonally, affects the efficiency of oxidation processes. Therefore, in this study, seawater samples were acquired from various locations in the Republic of Korea to understand the spatio-temporal patterns of marine dissolved organic matter. It was reported that the characterization of marine dissolved organic matter using liquid chromatography—organic carbon detector and excitation-emission matrix—parallel factor modeling. Furthermore, the effects of marine dissolved organic matter were evaluated on ozonation, an oxidation process. The results demonstrate that marine dissolved organic matter varies in its aquagenic, pedogenic, and intermediate characteristics based on region and season. These variations affect ozonation by influencing the consumption of oxidants (e.g., bromine). As a result, it was concluded that characterizing marine dissolved organic matter can help improve the effectiveness of oxidation processes, particularly ozonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.