Abstract

Four isozymes of manganese peroxidase (MnP) were identified in the culture fluid of the hyperlignolytic fungus IZU-154 under nitrogen starvation conditions. One of them was purified and characterized kinetically. The specific activity and Kcat/K(m) value of the MnP from IZU-154 were 1.6 times higher than those of the MnP from a typical lignin-degrading fungus, Phanerochaete chrysosporium. Two cDNAs encoding MnP isozymes from IZU-154 were isolated. The coding sequence of the two cDNAs, IZ-MnP1 cDNA and IZ-MnP2 cDNA, were 1,152 (384 amino acids) and 1,155 (385 amino acids) bp in length, respectively. They exhibit 96.2% identity at the nucleotide level and 95.1% identity at the amino acid level. Southern blot analysis indicated that two MnP isozyme genes exist in IZU-154 genomic DNA. The primary structures of two MnPs from IZU-154 were similar to those of MnPs from P. chrysosporium. The amino acid sequences including the important residues identified in MnPs from P. chrysosporium, such as the manganese-binding residues, the calcium-binding residues, the disulfide bonds, and the N-glycosylation site, were conserved in the two deduced IZ-MnPs. However, several discrepancies were found in the context around the distal histidine residue between MnP from IZU-154 and MnP from P. chrysosporium, which likely led to the difference in the kinetic parameters for MnP function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call