Abstract

The use of both tactile and hyperspectral imaging sensors, which exploit the mechanical and physiological changes in tissues, can significantly increase the performance in automatic identification of tumors with malignant histopathology. Tactile imaging measures the elastic modulus of a tumor, whereas hyperspectral imaging detects important biochemical markers. Spontaneous mammary tumors in canines were used to demonstrate the efficacy of our approach. The tactile sensor achieved a sensitivity of 50% and a specificity of 100% in identifying malignant tumors. The sensitivity and specificity of the hyperspectral sensor were 71% and 76%, respectively. We investigated several machine learning techniques for fusing the tactile and spectral data, which increased the sensitivity and specificity to 86% and 97%, respectively. Our tactile and hyperspectral imaging sensors are noninvasive and harmless (no ionized radiation is used). These imaging sensors may not only eliminate unnecessary surgeries, but will also motivate the development of similar sensors for human clinical use, due to the fact that canine and human tumors have similar physiology and biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call