Abstract

Thermoelectric (TE) technology attracts much attention due to the fact it can convert thermal energy into electricity and vice versa. Thin-film TE materials can be synthesized on different kinds of substrates, which offer the possibility of the control of microstructure and composition to higher TE power, as well as the development of novel TE devices meeting flexible and miniature requirements. In this work, we use magnetron sputtering to deposit N-type and P-type BiTe-based thin films on silicon, glass, and Kapton HN polyimide foil. Their morphology, microstructure, and phase constituents are studied by SEM/EDX, XRD, and TEM. The electrical conductivity, thermal conductivity, and Seebeck coefficient of the thin film are measured by a special in-plane advanced test system. The output of electrical power (open-circuit voltage and electric current) of the thin film is measured by an in-house apparatus at different temperature gradient. The impact of deposition parameters and the thickness, width, and length of the thin film on the power output are also investigated for optimizing the thin-film flexible TE device to harvest thermal energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.