Abstract

Welding techniques are emerging as a new method to join thermoplastic composite parts. They present a fast and efficient alternative to adhesives and mechanical fasteners. Induction welding is a welding technique that relies on the application of an oscillating magnetic field on the joining interface, where a material called a magnetic susceptor generates heat by interacting with the applied magnetic field. In this work, susceptors relying on magnetic hysteresis losses made of polyetherimide (PEI) and nickel (Ni) particles are investigated with varying Ni concentration. The materials are mixed using an internal mixer and pressed to form films approximately 500μm thick. To characterize the heating rates of the susceptor materials, samples are placed on an induction coil – a water-cooled copper tube in which AC current (frequency 388kHz), generates an alternating magnetic field – and the temperature evolution is measured using a thermal camera. An increasing concentration of Ni particles results in increased heating rate and maximum temperature reached by the samples. The temperature-time experimental curves are compared with theoretical heating curves to verify if the model can be used to predict the temperature evolution at the joining interface during a welding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call