Abstract

We have developed a liquid phase immunoassay technique using the Brownian relaxation of magnetic markers. In order to achieve this, we first characterized the magnetic markers, which are usually agglomerates of magnetic nanoparticles. The magnetic properties of the agglomerates were analyzed, and parameters such as the Brownian and Neel relaxation times and the magnetic moment were obtained. Using these key parameters, we could determine the markers that were suitable for the liquid-phase immunoassay. Then, we performed the detection of a biological target called biotin. In this experiment, biological targets were fixed on the surface of large polymer beads that were a few <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> in size. The bound and unbound (free) markers were magnetically distinguished without requiring a washing process to separate them. We used three magnetic sensors for the signal detection: a SQUID, an MR sensor, and a flux gate. The sensitivity of SQUID, MR sensor, and flux gate to the molecular-number concentration was estimated to be as high as <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$5.6\times 10^{-18}\ {\rm mol/ml}$</tex></formula> , <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$2.8\times 10^{-16}\ {\rm mol/ml}$</tex></formula> , and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$2.8\times 10^{-16}\ {\rm mol/ml}$</tex> </formula> , respectively. We also showed that the sensitivity could be improved by using magnetic markers with a large magnetic moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.