Abstract
This paper presents a comprehensive comparison of well-known machine learning algorithms for estimating discrete slip events associated with individual wheels in planetary exploration rovers. This analysis is performed with various tuning configurations for each algorithm (55 setups). This research also shows the key role that environment plays in the performance of the learning algorithms: rover speed (0.05–0.25 [m/s]), type of terrain (gravel vs. sand), and tire type (off-road tires vs. smooth tires). These contributions are validated by using a broad data set collected using a planetary rover equipped with proprioceptive sensing. This work not only identifies the best algorithm to be deployed for discrete slip estimation, but it also helps with the selection and the mounting position of the sensing systems to be employed in future robotic planetary missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Terramechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.