Abstract
Although Gaucher's disease occurs in three distinct forms with greatly varying degrees of severity, there is no correlation between the clinical course of the disease and levels of residual glucocerebrosidase, the fundamental enzymatic deficiency. In an effort to study secondary changes which might contribute to the pathology of Gaucher's disease, homogenates of spleen, liver, and brain tissue, as well as serum from patients with Gaucher's disease were analyzed for their content of a number of lysosomal enzymes. Extracts of 8 Gaucher spleens contained 3- to 4-fold increases in acid phosphatase activity as well as 5-to 10-fold increases in galactocerebrosidase 5 5 Galactosylceramide β-galactosidase and galactocerebrosidase, as well as lactosylceramide and lactocerebroside, are used interchangeably in the manuscript. activity. The marked elevation in galactocerebrosidase activity in Gaucher spleen was documented using various [ 3H]galactose labeled galactocerebrosides as substrates and with [ 3H]galactose labeled lactocerebroside under the “lactosylceramidase I” 5 assay conditions established by Suzuki (Tanaka, H., and Suzuki, K., 1975, J. Biol. Chem., 250, 2324–2332) that measure galactocerebrosidase activity specifically in the presence of G mi -ganglioside β-galactosidase. Acid phosphatase determinations using extracts of liver from a case of infantile, neuropathic Gaucher's disease revealed a 2-fold elevation in this activity, whereas brain acid phosphatase activity in this case was similar to that of control tissue. Separation of hexosaminidase A and B activities on DEAE-Sephadex columns indicated increases in both forms of the enzyme in Gaucher tissue with the major increase occurring in the hexosaminidase B component. Glucuronidase and nonspecific esterase were observed to be elevated approximately 2-fold. However, not all lysosomal enzyme activities were increased. Levels of splenic arylsulfatase A and B, α-arabinosidase, sphingomyelinase, α-mannosidase, and G mi -ganglioside β-galactosidase activities in Gaucher spleen were unremarkable. G mi -ganglioside β-galactosidase was measured using 4-methylumbelliferyl-β- d-galactopyranoside and [ 3H]galactose labeled lactocerebroside under the specific assay conditions described by Suzuki for the determination of “lactosylceramidase II” activity. Although levels of arylsulfatase A and B in Gaucher spleen were similar to those of control tissue, arylsulfatase A activity was markedly reduced (20% of control) in homogenates of brain from the case of infantile (type 2) Gaucher's disease. The metabolic and pathologic consequences of these changes in lysosomal enzymes in Gaucher's disease are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.