Abstract

IntroductionIn lung fibrosis, alveolar epithelium degenerates progressively. The goal of regenerative medicine is to aid repair and regeneration of the lost tissues in parenchyma and airways for which mobilization of tissue-resident endogenous or bone marrow-derived exogenous stem cells niches is a critical step. We used a lung injury model in mice to identify and characterize functional lung stem cells to clarify how stem cell niches counteract this degenerative process.MethodsShort term assay (STA) - Bleomycin-induced lung inflammation and fibrosis were assessed in a model of idiopathic pulmonary fibrosis in wild-type (WT), gp91phox-/- (NOX-/-), and gp91phoxMMP-12 double knockout (DKO) mice on C57Bl/6 background and Hoechst 33322 dye effluxing side population (SP) cells characterized. Long term assay (LTA) - In a bleomycin induced lung fibrosis model in C57Bl6 mice, the number of mature cells were quantified over 7, 14, and 21 days in bone marrow (BM), peripheral blood (PB), lung parenchyma (LP) and brochoalveolar lavage (BAL) fluid by FACS. BrdU pulse chase experiment (10 weeks) was used to identify label retaining cells (LRC). BrdU+ and BrdU- cells were characterized by hematopoietic (CD45+), pluripotency (TTF1+, Oct3/4+, SSEA-3+, SSEA-4+, Sca1+, Lin-, CD34+, CD31+), and lung lineage-specific (SPC+, AQP-5+, CC-10+) markers. Clonogenic potential of LRCs were measured by CFU-c assays.ResultsSTA- In lung, cellularity increased by 5-fold in WT and 6-fold in NOX-/- by d7. Lung epithelial markers were very low in expression in all SP flow sorted from lung of all three genotypes cultured ex vivo. (p < 0.01). Post-bleomycin, the SP in NOX-/- lung increased by 3.6-fold over WT where it increased by 20-fold over controls. Type I and II alveolar epithelial cells progressively diminished in all three genotypes by d21 post-bleomycin. D7 post-bleomycin, CD45+ cells in BALf in NOX-/- was 1.7-fold > WT, 57% of which were Mf that decreased by 67% in WT and 83% in NOX-/- by d21.LTA- Cellularity as a factor of time remained unchanged in BM, PB, LP and BAL fluid. BrdU+ (LRC) were the putative stem cells. BrdU+CD45+ cells increased by 0.7-fold and SPC+CC10+ bronchoalveolar stem cells (BASC), decreased by ~40-fold post-bleomycin. BrdU+VEGF+ cells decreased by 1.8-fold while BrdU-VEGF+ cells increased 4.6-fold. Most BrdU- cells were CD45-. BrdU- BASCs remained unchanged post-bleomycin. CFU-c of the flow-sorted BrdU+ cells remained similar in control and bleomycin-treated lungs.ConclusionSTA- Inflammation is a pre-requisite for fibrosis; SP cells, being the putative stem cells in the lungs, were increased (either by self renewal or by recruitment from the exogenous bone marrow pool) post-bleomycin in NOX-/- but not in DKO indicating the necessity of cross-talk between gp91phox and MMP-12 in this process; ex vivo cultured SP progressively lose pluripotent markers, notably BASC (SPC+CC10+) - significance is unknown. LTA- The increase in the hematopoietic progenitor pool in lung indicated that exogenous progenitors from circulation contribute to lung regeneration. Most non-stem cells were non-hematopoietic in origin indicating that despite tissue turnover, BASCs are drastically depleted possibly necessitating recruitment of progenitors from the hematopoietic pool. Loss of VEGF+ LRC may indicate a signal for progenitor mobilization from niches. BrdU- BASC population may be a small quiescent population that remains as a reserve for more severe lung injury. Increase in VEGF+ non-LRC may indicate a checkpoint to counterbalance the mobilization of VEGF+ cells from the stem cell niche.

Highlights

  • In lung fibrosis, alveolar epithelium degenerates progressively

  • Increase in VEGF+ non-label retaining cells (LRC) may indicate a checkpoint to counterbalance the mobilization of VEGF+ cells from the stem cell niche

  • Assessment of extent of fibrotic and inflammatory damage in the lung post bleomycin treatment Mice were sacrificed at 10 weeks and blood, lung parenchyma (LP) enzymatically digested by dispase 1.2 U/ml and BAL fluid (BALf)

Read more

Summary

Introduction

Alveolar epithelium degenerates progressively. The goal of regenerative medicine is to aid repair and regeneration of the lost tissues in parenchyma and airways for which mobilization of tissueresident endogenous or bone marrow-derived exogenous stem cells niches is a critical step. There are a myriad of effectors of lung injury, including infectious agents, particulate and chemical pollutants, radiation, and host defense mechanisms gone awry. Many of these processes are ablative in nature and require repair mechanisms that regenerate mature lung tissue through cell proliferation and differentiation. Fundamental to understanding mechanisms of repair are identifying and characterizing the cells that are potentially capable of repopulating the injured tissue. Like the basal cells of the tracheal epithelium, alveolar type II cells, bone marrow-derived stem cells, and residential stem cells that potentially serve the vascular compartment appear to be anatomically localized [2,3]. HSC are further characterized by their ability to rapidly efflux the DNA dye Hoechst 33342 [4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call