Abstract

Superplasticity of a TiAl based alloy at low temperature ranging from 750 to 900 °C and at strain rates from 2×10 −5 to 2×10 −4 s −1 is characterized in this work. In order to refine the grains, two-step forging techniques were applied for materials processing without subsequent annealing after forging. The tensile elongations between 150 and 533% were obtained. An extensive strain hardening on the true stress-strain curves is linked to the high dense mobile dislocations during deformation. The activation energy of 220 kJ mol −1 was measured which is close to the activation energy of dislocation pipe diffusion. Evolution of the microstructures after superplastic deformation were also performed by optical microscope and transmission electron microscope to correlate the mechanical properties. Based on these studies, it is suggested that the predominant mechanism for low temperature superplasticity is grain boundary sliding at low strain and dislocation glide creep at high strain rates, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.