Abstract

Silicon nitride films prepared on silicon by low pressure chemical vapour deposition (LPCVD) were characterized by electrical measurements (current-voltage and capacitance-voltage), Auger electron spectroscopy (AES) and reflection high energy electron diffraction (RHEED). The contact current versus contact field characteristics were interpreted in terms of the Fowler-Nordheim tunnelling of holes from silicon into silicon nitride, with the field of charged traps and the effect of changing the triangular shape of the barrier under steady state conditions taken into account and on the assumption of a Poole-Frenkel detrapping mechanism. AES data show that the LPCVD process yields stoichiometric Si 3N 4 films. RHEED data shows that films of thickness more than 10 nm are amorphous. Some crystalline structures of Si 3N 4 and SiO 2 are observed for thicknesses of less than 10 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.