Abstract

Ultra low-k dielectric SiCOH films were deposited with decamethylcyclopentasiloxane (DMCPSO, C10H30O5Si5) and cyclohexane (C6H12) precursors by plasma-enhanced chemical vapor deposition at the deposition temperature between 25 and 200 degrees C and their chemical composition and deposition kinetics were investigated in this work. Low dielectric constants of 1.9-2.4 were obtained due to intrinsic nanoscale pores originating from the relatively large ring structure of DMCPSO and to the relatively large fraction of carbon contents in cyclohexane. Three different deposition regions were identified in the temperature range. Deposition rates increased with temperature below 40 degrees C and decreased as temperature increased to 75 degrees C with apparent activation energies of 56 kJ/mol x K at < 40 degrees C, -26 kJ/mol x K at 40-100 degrees C, respectively. In the temperature region of 40-100 degrees C hydrocarbon deposition and decomposition process compete each other and decomposition becomes dominant, which results in apparent negative activation energy. Deposition rates remain relatively unaffected with further increases of temperature above 100 degrees C. FTIR analysis and deposition kinetic analysis showed that hydrocarbon deposition is the major factor determining chemical composition and deposition rate. The hydrocarbon deposition dominates especially at lower temperatures below 40 degrees C and Si-O fraction increases above 40 degrees C. We believe that dielectric constants of low-k films can be controlled by manipulating the fraction of deposited hydrocarbon through temperature control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call