Abstract
ABSTRACTTo appropriately simulate the long‐term mechanical behavior of municipal solid waste (MSW), a constitutive model coupling the effects of biodegradation and fibrous reinforcement was developed. In the proposed model, the compressive deformation due to biodegradation was regarded as being caused by an additional equivalent stress. Considering the effect of biodegradation, an evolution equation of the equivalent stress was proposed, and a plastic volumetric strain hardening law was developed. A fibrous reinforcement parameter was introduced, which was associated with the fiber content, stress state, and plastic shear strain of MSW. A plastic shear strain hardening law was developed to model the fibrous reinforcement. Based on the associated flow rule and two plastic strain hardening laws, the proposed model was established. The proposed model well simulated the hardening properties of MSW, as evidenced by the stress‒strain curves and the consistent, nonlinear increase in volumetric strain with axial strain. The differences in the shear strength and volumetric deformation due to the confining stress and fiber content were also well simulated by the model. Furthermore, the model predictions accurately reflected the findings of experiments conducted over a period of 10 years. Finally, parametric investigations were used to calibrate this proposed model, which can well characterize the long‐term MSW mechanical behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.