Abstract

The shape of local window plays a vital role in the estimation of original signal variance, which is used to shrink the noisy wavelet coefficients in wavelet-based image denoising algorithms. This paper presents an anisotropic-shaped region-based Wiener filtering (ASRWF) and BayesShrink (ASRBS) algorithms, which exploit the region characteristics to estimate the original signal variance using a statistical approach. The proposed approach divides the region centered on a noisy wavelet coefficient into various non-overlapping subregions. The Euclidean distance-based measure is considered to obtain the similarities between reference subregion and adjacent subregions. An appropriate threshold value is estimated by applying a statistical approach on these distances and the sets of similar and dissimilar subregions are obtained from a defined region. Thus, an anisotropic-shaped region is obtained by neglecting the dissimilar subregions in a defined region. The variance of every similar subregion is calculated and then averaged to estimate the original signal variance to shrink noisy wavelet coefficients effectively. Finally, the estimated signal variance is utilized in Wiener filtering and BayesShrink algorithms to improve the denoising performance. The performance of the proposed algorithms is analyzed qualitatively and quantitatively on standard images for different noise levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.