Abstract
Lithium-ion batteries (LIB) pose a safety risk due to their high specific energy density and toxic ingredients. Fire caused by LIB thermal runaway (TR) can be catastrophic within enclosed spaces where emission ventilation or occupant evacuation is challenging or impossible. The fine smoke particles (PM2.5) produced during a fire can deposit in deep parts of the lung and trigger various adverse health effects. This study characterizes the chemical composition of PM2.5 released from TR-driven combustion of cylindrical lithium iron phosphate (LFP) and pouch-style lithium cobalt oxide (LCO) LIB cells. Emissions from cell venting and flaming combustion were measured in real time and captured by filter assemblies for subsequent analyses of organic and elemental carbon (OC and EC), elements, and water-soluble ions. The most abundant PM2.5 constituents were OC, EC, phosphate (PO43−), and fluoride (F−), contributing 7–91%, 0.2–40%, 1–44%, and 0.7–3% to the PM2.5 mass, respectively. While OC was more abundant during cell venting, EC and PO43− were more abundant when flaming combustion occurred. These freshly emitted particles were acidic. Overall, particles from LFP tests had higher OM but lower EC compared to LCO tests, consistent with the higher thermal stability of LFP cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.